

# Efficient RL for Large Language Models

## with Intrinsic Exploration (PREPO)



Paper

Yan Sun<sup>1,2</sup>, Jia Guo<sup>2</sup>, Stanley Kok<sup>1</sup>, Zihao Wang<sup>2</sup>, Zujie Wen<sup>2</sup>, Zhiqiang Zhang<sup>2</sup> <sup>1</sup>National University of Singapore, <sup>2</sup>Ant Group

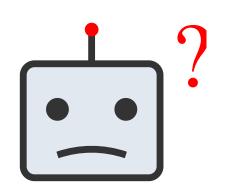
NeurIPS 2025 Efficient Reasoning Workshop

TL;DR

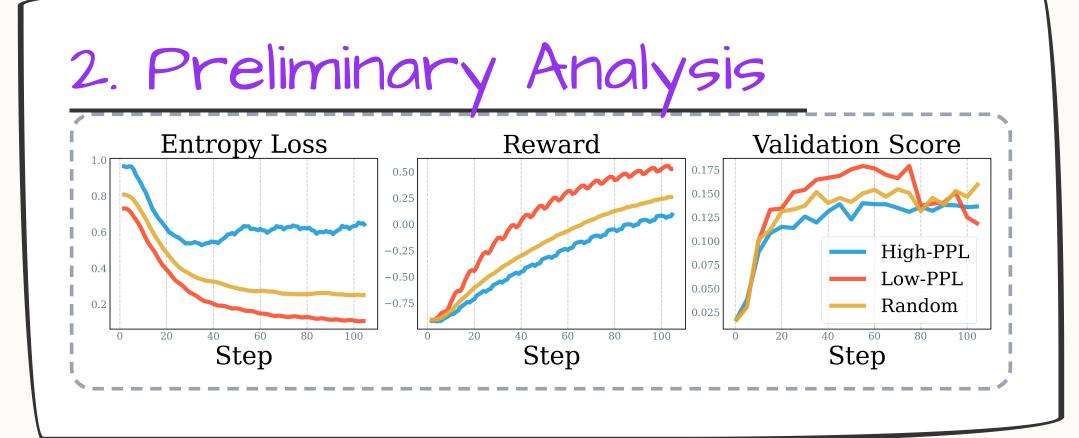
PREPO reduces Reinforcement Learning (RLVR) training costs

with "intrinsic" metrics—Prompt Perplexity & Rollout Entropy—to filter data, quiding exploration.

• Costly: Standard RLVR generates thousands of rollouts.



- Inefficient: Many samples are too easy or too hard (zero advantage).
- Goal: Data-efficient RLVR training using data intrinsic properties.



# 4. Method: Rollout Weight Strategy: Relative Entropy

Prioritize diverse reasoning paths. Weight rollouts by their average token-level entropy. (V: vocabulary size)

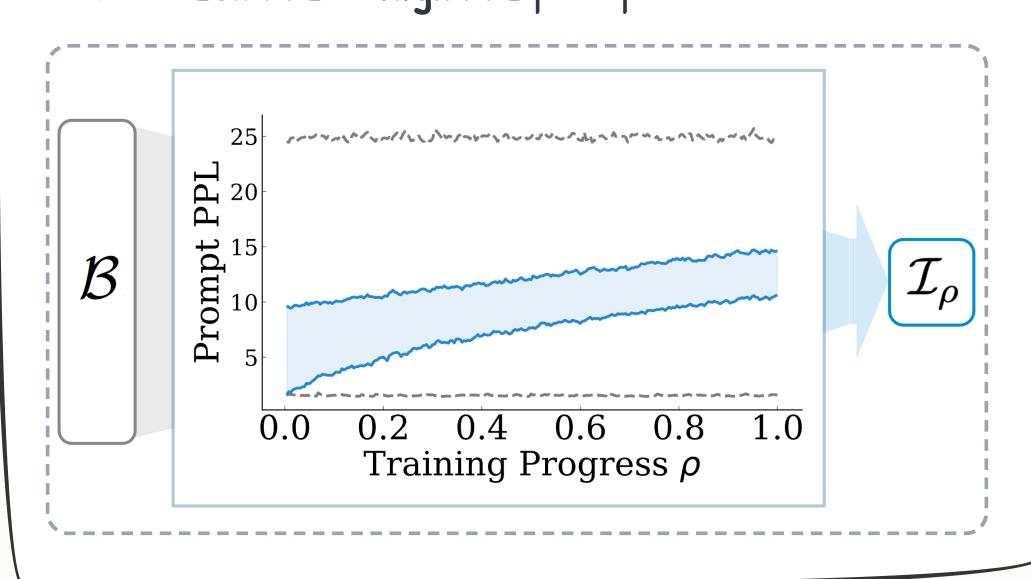
$$ar{H}_i = -rac{1}{|o_i|} \sum_{t=1}^{|o_i|} \sum_{v \in V} p(v|x_t) \log p(v|x_t)$$



## 3. Method: Online Prompt Selection

### Strategy: Prompt Perplexity

Use perplexity as a proxy to select from a candidate batch  ${\cal B}$  to the actual batch  ${\cal I}_{
ho}$  at every training step. Train on Low PPL to High PPL prompts.



## 5. Results

Tested on Quen & Llama (MATH500, AIME, Olympiad)

| Model           | Method | Avg Acc. | Rollouts    |
|-----------------|--------|----------|-------------|
| Qwen2.5-Math-7B | Random | 39.45%   | 905K        |
|                 | PREPO  | 39.59%   | 540K (1.7x) |
| Qwen3-4B        | Random | 71.33%   | 553K        |
|                 | PREPO  | 75.99%   | 348K (1.6x) |

